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Abstract

The present work deals with the modeling of 1-3 periodic composites made of piezoceramic (PZT) fibers embedded
in a soft non-piezoelectric matrix (polymer). We especially focus on predicting the effective coefficients of periodic trans-
versely isotropic piezoelectric fiber composites using representative volume element method (unit cell method). In this
paper the focus is on square arrangements of cylindrical fibers in the composite. Two ways for calculating the effective
coefficients are presented, an analytical and a numerical approach. The analytical solution is based on the asymptotic
homogenization method (AHM) and for the numerical approach the finite element method (FEM) is used. Special
attention is given on definition of appropriate boundary conditions for the unit cell to ensure periodicity. With the
two introduced methods the effective coefficients were calculated for different fiber volume fractions. Finally the results
are compared and discussed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have the property of converting electrical energy into mechanical energy and vice
versa. This reciprocity in the energy conversion makes piezoelectric ceramics such as PZT (lead zirconium
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titanat) very attractive materials towards sensors and actuators applications. Even if their properties make
them interesting, they are often limited, first by their weight, that can be a clear disadvantage for shape con-
trol and as a consequence, by their high specific acoustic impedance, which reduces their acoustic matching
with the external fluid domain. Bulk piezoelectric materials have several drawbacks, hence composite mate-
rials are often a better technological solution in the case of a lot of applications such as ultrasonic trans-
ducers, medical imaging, sensors, actuators and damping. For the last 20 years, composite piezoelectric
materials have been developed by combining piezoceramics with passive non-piezoelectric polymers. Supe-
rior properties have been achieved by these composites by taking advantage of most profitable properties of
each constituents and a great variety of structures have been produced. Recently, due to the miniaturization
of piezoelectric composites and the use of PZT fibers instead of piezoelectric bars, new applications toward
electromechanical sensors and actuators have become possible. But, because the fibers are now much smal-
ler than the wavelength, homogenization techniques are necessary to describe the behavior of piezoelectric
composites.

Even if analytical and semi analytical models have been developed to homogenize piezoelectric compos-
ites, they are often reduced to specific cases. Numerical methods, such as the finite element method, seem to
be a well-suited approach to describe the behavior of these materials, because there are no restrictions to the
geometry, the material properties, the number of phases in the piezoelectric composite, and the size. How-
ever, finite element results are sensitive to mesh density. So it could be a difficult task to find appropriate
meshes.

The prediction of the mechanical and electrical properties of piezoelectric fiber composites became an
active research area in recent years. Except from experimental investigations, either micro- or macro
mechanical methods are used to obtain the overall properties of piezoelectric fiber composites. Micro
mechanical methods provide an overall behavior of piezoelectric fiber composites from known properties
of their constituents (fiber and matrix) through an analysis of a periodic representative volume element
(RVE) or a unit cell model. In the macro mechanical approach, on the other hand, the heterogeneous struc-
ture of the composite is replaced by a homogeneous medium with anisotropic properties. The advantage of
the micro mechanical approach is that not only the global properties of the composites can be calculated,
but also various mechanisms such as damage initiation and propagation, crack growth, etc. can be studied
through the analysis.

A number of methods have been developed to predict and to simulate the coupled piezoelectric and
mechanical behavior of composites. Basic analytical approaches have been reported (e.g. Chan and
Unsworth, 1989; Smith and Auld, 1991), which are not capable of predicting the response to general load-
ing, i.e. they do not give the full set of overall material parameters. Semi analytical and Hashin/Shtrik-
man-type bounds for describing the complete overall behavior (i.e. all elements of the material tensors)
have been developed (Bisegna and Luciano, 1996, 1997) which are useful tools for theoretical consider-
ations. However, the range between the bounds can be very wide for certain effective moduli. Mechanical
mean field type methods have been extended to include electro-elastic effects (Benveniste, 1993; Dunn and
Taya, 1993; Wang, 1992; Chen, 1993) based on an Eshelby-type solution for a single inclusion in an infi-
nite matrix (Benveniste, 1992; Dunn and Wienecke, 1997). Such mean field type methods are capable of
predicting the entire behavior under arbitrary loads. However, they use averaged representations of the
electric and mechanical field within the constituents of the composite. This restriction can be overcome
by employing periodic micro field approaches (commonly referred to as unit cell models) where the fields
are typically solved numerically with high resolution, e.g. by the finite element method (Gaudenzi, 1997).
In such models the representative unit cell and the boundary conditions are designed to capture a few
special load cases, which are connected to specific deformation patterns (e.g. Brockenbrough and Suresh,
1990; Bohm, 1993; Gunawardena et al., 1993; Cleveringa et al., 1997). This allows the prediction of only a
few key material parameters; for example, only normal loads can be applied consistently using the
symmetry boundary conditions. A different method which can handle arbitrary loading scenarios is the
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so-called asymptotic homogenization approach (Suquet, 1987; Bakhvalov and Panasenko, 1989). The lo-
cal problems are considered and the effective elastic, piezoelectric and dielectric moduli are explicitly
determined analytically.

Using the finite element method Poizat and Sester (1999) meshed the unit cell of the material and by
applying specific boundary conditions, he has determined two piezoelectric coefficients. To the knowledge
of the authors, the only unit cell models which capture the entire behavior correctly so far have been re-
ported by Teply and Dvorak (1988) and recently by Smith et al. (1998). Presumably correct boundary con-
ditions are employed in Reisner et al. (1998), Bisegna and Luciano (1997), although no details are given.
The aim of this paper is to predict the full set of material moduli, i.e. to determine the complete tensors
associated with the overall elastic, dielectric and piezoelectric behavior. This means that the linear response
to any mechanical and electrical load, or any combination of both, will be determined. FEM tools have
been extensively used in the literature to analyze a periodic unit cell, to determine the effective properties
and damage mechanisms of piezoelectric fiber composites. In the present paper the FEM based micro-
mechanical analysis method is applied to unidirectional periodic piezoelectric fiber composites subjected
to different loading conditions with different boundary conditions to predict the effective coefficients of
transversely isotropic piezoelectric fiber composites (1-3 periodic).

The effective coefficients are predicted for various fiber volume fractions by using the asymptotic homog-
enization method on one hand (analytical solution) and on the other hand by means of finite element
method (numerical solution). Both results are compared and discussed.

2. Piezoelectricity and piezoelectric composites

Coupled piezoelectric problems are those in which an electric potential gradient causes deformation
(converse piezoelectric effect), while mechanical strains cause an electric potential gradient in the material
(direct piezoelectric effect). The coupling between mechanical and electric fields is characterized by piezo-
electric coefficients. Those materials respond linearly to changes in the electric field, the electrical displace-
ments, or mechanical stresses and strains. These assumptions are compatible with the piezoelectric
ceramics, polymers, and composites in current use (Silva et al., 1998). Therefore, the behavior of the pie-
zoelectric medium is described by the following piezoelectric constitutive equations, which correlate stresses
(Ty), strains (Sy;), electric fields (E%), and electrical displacements (D;) as follows:

Tij = Cljlekl - ekijEka (1)
D; = ewSu + €L,

where Cyy; is the fourth-order elasticity tensor under short circuit boundary conditions, &g is the second-

order free body electric tensor, and ey; is the third-order piezoelectric strain tensor. Due to the symmetry

of the tensors Ty, S, Cy, and ¢, the above Eq. (1) can be written in a vector/matrix notation by using

Voigt’s notation as

KA @

where superscript T denotes a transposed matrix.

For a transversely isotropic piezoelectric solid, the stiffness matrix, the piezoelectric matrix and the
dielectric matrix simplify so that there remain 11 independent coefficients. In the case of aligned fibers made
of a transversely isotropic piezoelectric solid (PZT), embedded in an isotropic polymer matrix, the resulting
composite is a transversely isotropic piezoelectric material too. Consequently, the constitutive Eq. (2) can
be written as
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In this matrix the general variables of the coupled electromechanical problem were replaced by the appro-
priate values for the homogenized structure. So, ijff, ej’jff, sj’;‘f denote the effective material coefficients and
S;, Ei, Ty, D; denote average values. These relations represent the basis for the further considerations

based on the unit cell.

3. Representative volume element (unit cell) method

In general the object under consideration is regarded as a large-scale/macroscopic structure. The com-
mon approach to model the macroscopic properties of 3D piezoelectric fiber composites is to create a rep-
resentative volume element (RVE) or a unit cell that captures the major features of the underlying
microstructure. The mechanical and physical properties of the constituent material is always regarded as
a small-scale/micro structure. One of the most powerful tools to speed up the modeling process, both
the composite discretization and the computer simulation of composites in real conditions, is the homog-
enization method. The main idea of the method is to find a globally homogeneous medium equivalent to the
original composite, where the strain energy stored in both systems is approximately the same. Different ana-
Iytical homogenization techniques have been developed in order to predict the effective properties of piezo-
electric composites. Uni-directional (1-3 periodic) piezoelectric fiber composites can be analyzed by using
asymptotic homogenization method. Inclusion problems (i.e. 0-3 periodic) can be analyzed by self-consis-
tent methods (see Levin et al., 1999). Moreover, numerical methods (e.g. FEM techniques) have been devel-
oped to evaluate the effective coefficients of composites. In this paper we limit ourselves to a quasistatic
analysis of periodic (1-3) structures with perfectly bonded continuous fibers which are aligned and poled

surface B*  surface C /‘X_ZJ
0:0i0i0|0!0 surface A T M 1
0:0!0:0]|0]0 RVE orunitcell = . 1|
000000 " @ surface A"
1 matrix )
0000|100 fiper surface C' surface B
@ (b)

Fig. 1. Schematic diagram of a periodic 1-3 composite: (a) and unit cell, (b) picked from the original composite.
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along the x5 axis as shown in Fig. 1. With help of symmetry, such a regular piezoelectric fiber composite
may be analyzed by using a representative volume element or unit cell. A unit cell is the smallest part that
contains sufficient information on the above-mentioned geometrical and material parameters at the micro-
scopic level to deduce the effective properties of the composite.

Fig. 1 shows the unit cell that is picked from the periodic piezoelectric fiber composite. It has infinite
lengths in all three directions. In this paper we consider a composite with a square fiber arrangement. It
is assumed that the material properties are the same in the first two directions (i.e. along x; and x, axis).
All the fibers are assumed to be straight and poled in the third direction (i.e. along axis x3). Fig. 1(b) shows
the schematic diagram of the unit cell picked from the considered composite.

4. Analytical solution using asymptotic homogenization method

For a heterogeneous and periodic medium Q' the constitutive relations of the linear piezoelectricity the-
ory in Eq. (1) are characterized by different material coefficients: C (elastic), e (piezoelectric) and ¢ (dielec-
tric) which are X periodic functions. X denotes the periodic cell. By means of the asymptotic
homogenization method (Bensoussan et al., 1978; Bravo-Castillero et al., 2001) the original constitutive
relations (Eq. (1)) with rapidly oscillating material coefficients are transformed in two sets of mathematical
problems.

The first set has new physical relations over Q with constant coefficients: C° (elastic), ¢ (piezoelectric)
and &7 (dielectric) which represent the properties of an equivalent homogeneous medium Q and they are
called the effective coefficients of the composite under study. They are calculated by using the following for-
mulae (see Bravo-Castillero et al., 2001):

Csng = (Ciing (%) + Cijia (¥) pgMx.1(x) + €43 (x) pgN 1 (x)),

ey = eipg (%) + e () pyMica (x) — € (x) N 4(x)), (4)
&y = (ip(x) — e (), Q4 (x) + & (x),Prs (%)),
where (f) = ITI\ 1) f dX. The material coefficients Cyjpy(X), €jp4(X), €n(X) are known functions of the constit-

uents composite phases. x = (x1, x», x3) is the local variable on the periodic cell X. The subscripts assume the
values 1, 2 and 3; the comma denotes partial differentiation, and the summation convention is applied.

The second set allows the calculation of the functions ,,M, ,,N and ,P which are solutions of the
so-called local problems ,,L and ,L. The local problems ,,L and ,L are solved over the periodic cell X
and they were derived in Bravo-Castillero et al., 2001. More precisely, this is given as follows.

We consider a two-phase fiber-reinforced piezoelectric composite body with x3 as fiber direction and
with a unit length parallel to the cylindrical fibers (see Fig. 1(b)). The composite constituents are homoge-
neous linear transversely isotropic piezoelectric materials, with the axis of transverse isotropy oriented in
the direction of the fibers. The cell X of the body is chosen with a side parallel to x; and with unit length.
The common interface between the fiber and the matrix is denoted by I'.

The local problem ,,L where the subscripts p,q =1,2,3 and pg = gp, seeks the pg-displacement ,,(,M(“)
and the pg-potential MN(“) in X,, which are double periodic functions of periods w;=(1,0) and
w, = (0,1) in the x; and x, directions, respectively. They are the solutions of

quff‘t)(; =0 inX, quf{‘; =0 inX,
lpgMill =0 on I [N =0 onT;

lpg Tionsll = —||Cispgllns  on I's [ Dsns|| = —|lespgllns  on I
(M) = 0; <qui> =0,
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where
pal l(: )= Cz(jlz/ M ](:()) + egj(; s </1 ); D ES&) = 95301?1 M 1@ - 855? N ()1 >;
pal (%? = Cg?“ M go?(’ peD goo = egg;)l M (yx;

and
wmTiy = ClatimSih

the comma notation denotes a partial derivative with respect to the x; component; again the summation
convention is applied, but it is taken over repeated lower cases indices only. X, is the region occupied
by the phase o. The outward unit normal vector to the interface I is n. The double bar notation ||f]| denotes
the jump of the function f across the interface I, i.e. |[f]| = f" — £ whereas the indices (1) and (2) denotes
the matrix and the fiber properties, respectively.

The ,L problem is stated as follows: the p-displacement ,,P("‘) and the p-potential pQ(“) are sought in X,
which are periodic functions of periods w; = (1,0) and w, = (0, 1) that satisfy the boundary-value problems

T =0 inX,; ,,D%:O in X,;

P~ 0,0
||qui|| =0 onl; ||qui|| =0 on [}
]|pT,»5n5|| = —||ep,«5 |no on I’ ||pD(;n(;’ = —||esp||ns on I
(oPi) =0; (+0;) =0,

where
T = CL P+ 0,00 D = ) P — 2,0,
oIS = ChupPls DY) = ety Pl

The analytical solution of the local problems, which is based upon the complex-potential method of
Muskhelishvili, utilizes a series expansion of the doubly periodic Weierstrass elliptic functions to predict
both the local and overall averaging properties of the composite materials (Pobedria, 1984; Meguid and
Kalamkarov, 1994).

Using Eq. (4) we obtain for the plane-problem the following expressions for the global properties of the
composite:

k=k— ValkIPK/mi, 1= 1, = VallI||kIK/mi, 7 =n, — VallI|PK /m,
=y~ VallmlM, i =m— VoM g = g, — Vallgl[KIK /m,
F=ry = VallllglK /mi, @ =u,+ VallgIPK m. (5)

S

In the above equations the coefficients k= (Cllll + Cllzz)/z, = C1133 = C2233, m = (Cllll — C“zz)/z,
m = Cy»1» and n = Cs333, correspond to elasticity. The coefficients ¢ = e31; = e3> and r = e333 are piezoelec-
tric ones, and u = &33 is a dielectric constant. The subscripts v refer to the Voigt average of the relevant
quantity, i.e. the phase-mixing rule in the cross section of the composite. For instance, k, = k| V1 + ky V>,
etc., and ¥V, are the area fractions occupied by the matrix and fiber materials, respectively, and V7 + V, = 1.
The constants K, M and M’ are calculated according to the expressions (3.36) and (3.38b) on pp. 231-232 in
Rodriguez-Ramos et al. (2001) and the rest of effective properties p = Ci313, s = €113 and ¢ = & related to
the anti-plane problem (3L are computed following the formulae (3.26) on pp. 244 in Bravo-Castillero, et al.
(2001).
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5. Numerical solution using finite element method
5.1. Periodic boundary conditions to RVE

Composite materials can be represented as a periodical array of RVEs. Therefore, periodic boundary
conditions must be applied to the RVE models. This implies that each RVE in the composite has the same
deformation mode and there is no separation or overlap between the neighboring RVEs. These periodic
boundary conditions on the boundary RVE are given by Suquet (1987)

up = Syx; + vr. (6)

In the above Eq. (6) S;; are the average strains, v; is the periodic part of the displacement components (local
fluctuation) on the boundary surfaces, which is generally unknown and is dependent on the applied global
loads. The indices i and j denote the global three-dimensional coordinate directions in the range from 1 to 3.
A more explicit form of periodic boundary conditions, suitable for square RVE models can be derived from
the above general expression. For the RVE as shown in Fig. 1(b), the displacements on a pair of opposite
boundary surfaces (with their normal along the x; axis) are

K+ _ < K+ K+
w, =Syx; +u (7)

ll11»<7 = Eijxfi + Uf(i, (8)

where index ‘K" means along the positive x; direction and ‘K~ means along the negative x; direction on the
corresponding surfaces 4 /A", B /B" and C /C" (see Fig. 1(b)). The local fluctuations v and o5
around the average macroscopic value are identical on two opposing faces due to periodic conditions of
RVE. So, the difference between the above two equations is the applied macroscopic strain condition
K+ K- _ o (K* -

up —u; :Si](xj —xf ) 9)
Similarly the periodic boundary condition for electric potential is given by the applied macroscopic electric
field condition and is

ok = E(xf* —xf’). (10)

It is assumed that the average mechanical and electrical properties of a RVE are equal to the average prop-
erties of the particular composite. The average stresses and strains in a RVE are defined by

= 1
= 1
TU:; VTUdV7 (12)

where V' is the volume of the periodic representative volume element. Analogous the average electric fields
and electrical displacements are defined by

VJy

- 1
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5.2. Finite element modeling

All finite element calculations were made with FE package ANSYS. For modeling the RVE three-dimen-
sional multi-field 8 node brick elements with displacement degrees of freedom (DOF) and additional elec-
tric potential (voltage) degree of freedom were used. These allows for fully coupled electromechanical
analyses.

To obtain the homogenized effective properties we apply the macroscopic boundary conditions (Egs. (9)
and (10)) to the RVE by coupling opposite nodes on opposite boundaries. In order to apply these periodic
boundary conditions in the FE analysis, the mesh on the opposite boundary surfaces must be the same. For
each pair of displacement components at two corresponding nodes with identical in-plane coordinates on
the two opposite boundary surfaces a constraint condition (periodic boundary condition Eq. (9) or (10)) is
imposed. The prescription of these constraint conditions to all opposite nodes at opposite boundary sur-
faces directly in ANSYS is a very difficult task because of too many number of nodes. Consequently, we
developed a FORTRAN program which generates all required constraint conditions automatically. First
the finite element mesh is created from the ANSYS preprocessor. Then based on the generated nodal coor-
dinates the appropriate nodal pairs are selected by the FORTRAN program and a partial ANSYS input file
is created containing the constraint conditions. Using this input file ANSYS continues with assigning the
constraint equations and finally with solving the problem. As an example Fig. 2 shows the constraint equa-
tions for a pair of nodes on opposite surfaces A~ and A™.

For the calculation of effective coefficients we consider a piezoceramic (PZT-5) fiber embedded in a soft
non-piezoelectric material (polymer). In analytical as well as in numerical modeling, we are assuming that
the fibers and the matrix are ideally bonded and that the fibers are straight and parallel to the x3 axis. The
fiber section is circular and the unit cell is having a square cross section. The piezoelectric fibers are uni-
formly poled along the x5 direction. The material properties of polymer and PZT-5 are listed in Table 1,
where elastic properties, piezoelectric constants and permittivities are given in N/m? C/m? and F/m,
respectively.

To find the effective coefficients special load cases with different boundary conditions must be con-
structed in such a way that for a particular load case only one value in the strain/electric field vector
(see Eq. (3)) is non-zero and all others become zero. Then from one row in Eq. (3) the corresponding effec-
tive coefficient can be calculated using the calculated average non-zero value in the strain/electric field
vector and the calculated average values in the stress/electrical displacement vector.

In the next chapters the special models for calculating different effective coefficients are explained in de-
tail. Every load case was calculated for six different fiber volume fractions in the range from 0.111 to 0.666

u =ur+ S, Ax)]

U’A: B U;': uzA-+ Sy AX,
U | ¢ { < u = U+ S, Ax,|
u,” '
a
= T
I B [t
T
A
AT
Ax, = x - X

Fig. 2. Periodic boundary conditions for a pair of nodes on opposite surfaces 4~ and A™.
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Table 1
Material properties of the composite constituents fiber (PZT-5) and matrix (polymer)

Cii (10" C12(10")  Ci3 (107 G35 (10" Cua (10"%)  Ce6 (10') €5 o3 ex3 e (1077 e33(1077)

PZT-5 12.1 7.54 7.52 11.1 2.11 2.28 123 -54 158 8.11 7.35
Polymer  0.386 0.257 0.257 0.386 0.064 0.064 - - - 0.07965 0.07965

0.111 0222 0.333 0.444 0.555 0.666

Fig. 3. Investigated ratios of fiber volume fraction.

with steps of 0.111. Fig. 3 visualizes the relation of fiber and matrix for the different investigated fractions.
Since only the volume fiber fraction has an influence on the results the size of the RVE was chosen as a unit
length.

6. Numerical calculation of the different effective coefficients

6.1. Calculation of C% and C%lf

For the calculation of the effective coefficients CT and CI the boundary conditions have to be applied
to the RVE in such a way that, except the strain in the x; direction (Ss3), all other mechanical strains and
gradients of electric potential (E;) become zero. This can be achieved by constraining the normal displace-
ments at all surfaces to zero except of surface C* (see Fig. 1(b)). At surface C" the periodic boundary con-
dition corresponding to surface C~ must be applied. Due to applied zero displacements to surface C™ in x;3
direction (u§ = 0) the periodic boundary condition in this direction according to Eq. (9) simplifies to

W =S (o -, (15)

Because now this equation is independent of «§ , instead of using constraint equations, an arbitrary con-
stant prescribed displacement can be applied on surface C* to produce a strain in x5 direction.

To make gradients of the electric potential in all directions zero the voltage degree of freedom on all sur-
faces is set to zero.

Fig. 4 shows the finite element mesh. In Figs. 5 and 6 the distribution of the strain Ss3 and the stress 753
is shown in the deformed model, respectively.

For the calculation of the total average values Ss3, T, and Ts; according to Egs. (11) and (12) the inte-
gral was replaced by a sum over averaged element values multiplied by the respective element volume.
Using these total average values the coefficients Cigf and C§f3f can be calculated from the matrix Eq. (3).
Due to zero strains and electric fields, except Ss; the first row becomes T, = Ci§f§33. Then C?gf can be cal-
culated as the ratio of T} /Ss;. Similarly ngf can be evaluated as the ratio of T33/S3; from the third row of
matrix Eq. (3).

Figs. 7 and 8 show the variation of these effective coefficients for different volume fractions in compar-
ison to the calculated values by AHM.
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Fig. 4. Finite element mesh.

Fig. 5. Strain distribution Ss3.

Fig. 6. Stress distribution 73;.

6.2. Calculation of C/ and C%J

For the calculation of the effective coefficients CS"" and C we have similar conditions like for the cal-
culation of the effective coefficients C$§ and CS5. But now a prescribed displacement in x, direction must be
applied on surface 4™ and the normal displacements on all other surfaces must be set to zero. Also the
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Fig. 7. Variation of C5; as a function of volume fraction and comparison between FEM and AHM.
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E 508
£ 30ev0 o
£ 9 2.0E+10 o
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1.0E+10 o

0.0E+00
0.0 0.2 0.4 0.6 0.8

Fiber volume fraction

Fig. 8. Variation of C5; as a function of volume fraction and comparison between FEM and AHM.

electric potential DOF at all surfaces is set to zero. For the calculation of these coefficients the in-plane
behavior is relevant only. That’s why modeling of a small slice with one element in x5 direction is sufficient.
Fig. 9 shows this model including the finite element mesh. The calculated distribution of the strains S;; and
stresses 77; are shown in the deformed configuration in Figs. 10 and 11, respectively.

Fig. 9. Finite element mesh.
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Fig. 10. Strain distribution Si;.

Fig. 11. Stress distribution 77;.

Using the total average strain S;; and stress T}, from first row of matrix Eq. (3) we get T}, = CTfS“.
From this relation C*" can be calculated as the ratio of 7'j;/S);. Similarly C:I can be found as the ratio
of T, /S, using the second row of matrix Eq. (3). Figs. 12 and 13 show the variation of these effective coef-
ficients for different volume fractions in comparison with the calculated values by AHM.

2.0E+10 I
—=&— FEM

16E+10 11 A /
12E+10 A
£ = 8.0E+09 /

—¥

[N/m?]

Cc

4.0E+09

0.0E+00
0.0 0.2 0.4 0.6 0.8

Fiber volume fraction

Fig. 12. Variation of C"' as a function of volume fraction and comparison between FEM and AHM.
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= ﬁ?('/
Z, 4.0E+09
%U‘Q.‘ M
2.0E+09
0.0E+00
0.0 0.2 0.4 0.6 0.8

Fiber volume fraction

Fig. 13. Variation of C:7 as a function of volume fraction and comparison between FEM and AHM.

6.3. Calculation of C/ and C%/

To evaluate the effective coefficient CS! the in-plane shear strain S}, may have a non-zero value in strain/
electric field vector of Eq. (3) only. For the evaluation of Ciff the out-of-plane shear strain S»; or S3; may
have a non-zero value only. This can be achieved by applying appropriate shear forces to produce a pure
shear stress state in the desired directions which, consequently, results in a pure shear strain state. Beside
the applied shear forces the displacement boundary conditions must be chosen in the right way to get these
states. That means that a symmetric deformation mode respective to the diagonal line of the shear plane
must be ensured; see also Fig. 2, which visualizes such a pure shear stress state in a plane view. To receive
such pure shear stress state a support normal to the diagonal at one edge of the finite element model was
applied. To avoid rigid body movement the opposite edge was fixed in the shear plane. Figs. 14 and 17 show
these finite element models with shear forces and the above mentioned supports for both load cases, respec-
tively. For the calculation of C<I the x,—x3 plane was chosen as shear plane. Furthermore normal displace-
ments at parallel surfaces to the shear plane must be set to zero to ensure zero strains perpendicular to the
shear plane. Also the electric potential DOF on all surfaces must be set to zero. The calculated stress and
strain distribution is shown in Figs. 15, 16 and 18, 19.

Using the calculated non-zero average strain and stress values from the first model the sixth row in the
matrix Eq. (3) becomes T}, = széf S|, and, consequently, ng can be evaluated as the ratio of T},/S},. With

Fig. 14. Finite element mesh with shear loads and in-plane supports.
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N %

Fig. 16. Stress distribution 77,.

Fig. 17. Finite element mesh with shear loads and out-of-plane supports.

the second model C§; can be found as the ratio of T»;/S». Figs. 20 and 21 show the variation of these

effective coefficients for different volume fractions.
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Fig. 19. Stress distribution 753.
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Fig. 20. Variation of C&f as a function of volume fraction and comparison between FEM and AHM.

6.4. Calculation of ¢, ¢/ and &/

In order to evaluate the effective coefficients €f, eSi and &Y, all surfaces must be constrained to have
zero normal displacements. A zero electric potential is applied to the surface C~ and a non-zero electric
potential is applied to the surface C*. The electric potential at all other surfaces is set to zero. Since all sur-
faces are constrained to have zero displacements and because of the electric potential difference in x3 direc-
tion the fiber will try to expand and stresses as well as electric fields are produced in x3 direction. The
calculated distribution of T3, T; and D5 is shown in Figs. 22-24.
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Fig. 21. Variation of CI as a function of volume fraction and comparison between FEM and AHM.

Fig. 22. Stress distribution 73;.

Fig. 23. Stress distribution 77;.

Consequently, the total average stress and electrical displacement values as well as the total average elec-

tric field E; can be calculated. Then the third row of the matrix Eq. (3) reduces to 733 = —eSiE3, so that

&St = —Ts3/E;. Similarly € is the ratio of —7;/E;. For the evaluation of & the last row of matrix
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Fig. 24. Electrical displacement distribution Ds.

Eq. (3) is used which becomes D = &IE;. From this equation &5 can be calculated by &I = —D;/E;. Figs.
25-27 show the variation of these effective coefficients for different volume fractions.

6.5. Calculation of ¢

The effective coefficient T can be calculated as the ratio of D, /S,; from the seventh row of the matrix. In
order to evaluate this coefficient, the boundary conditions should be applied in such a way that except of

0.0E+00
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Fig. 25. Variation of ¢ as a function of volume fraction and comparison between FEM and AHM.
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Fig. 26. Variation of €5 as a function of volume fraction and comparison between FEM and AHM.
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Fig. 27. Variation of & as a function of volume fraction and comparison between FEM and AHM.

the strain S»; in the strain/electric field vector in Eq. (3), all other strains and electric fields are made to zero.
Similarly to the calculation of Ciﬂf out-of-plane shear forces are applied in the x,—x3 plane (Fig. 28). The
electric potential in all directions is made to zero by constraining the voltage degree of freedom to zero.
Consequently, in the matrix Eq. (3) the eighth row becomes D, = ¢¢1S,;. From this equation €I can be
calculated by the ratio eI = D,/S»;. The calculated distribution of S,; and D, is shown in Figs. 29 and
30. Fig. 31 shows the variation of this effective coefficients for different volume fractions in comparison with

the calculated values by AHM.

Fig. 28. Finite element mesh with shear loads and out-of-plane supports.

Fig. 29. Strain distribution Sp;.
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®

Fig. 30. Electrical displacement distribution D,.
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Fig. 31. Variation of ¢ as a function of volume fraction and comparison between FEM and AHM.

6.6. Calculation of &/

&'l can be evaluated as the ratio of D,/E,. In order to solve these equations, all mechanical strains (S;;)
should be made equal to zero. This can be achieved by constraining the displacements at all surfaces to
zero. The electric potential difference should be applied in x; direction. Then the eighth row of the matrix
gives the & coefficient.

Figs. 32 and 33 show the calculated distribution of the electric field £, and the electric displacement Ds.

The variation of this effective coefficient for different volume fractions is shown in Fig. 34.

7. Discussion of results

All 11 effective coeflicients have been calculated using AHM and FEM for six different fiber volume frac-
tions. From these discrete fractions graphs were interpolated and shown as comparison between AHM and
FEM in the diagrams in Section 6.

The results calculated by AHM were verified by Schulgasser relations and they were fulfilled over
the whole range of fiber volume fraction (see Bravo-Castillero et al., 2001). Moreover, the reliability
of AHM was proofed in Guinovart-Diaz et al. (2001) and Guinovart-Diaz et al. (2002) where also a com-
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Fig. 32. Strain distribution S>;.

Fig. 33. Electrical displacement distribution D,.
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Fig. 34. Variation of &7 as a function of volume fraction and comparison between FEM and AHM.

parison with irregular in-plane distribution of the fibers was done. There a good concordance has been
observed between the models for the calculation of effective coefficients with random distribution and
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regular distribution of the fibers using AHM and method of effective field reported in Sevostianov et al.
(2001).

The results in this paper show in general a good coincidence between calculation by AHM und FEM.
The effective coefficients C%§, C53, e, e oo e &Sl calculated by FEM show a very good agreement
with the coefficients obtained by AHM in all range of the volume fraction. Qualitatively, the behavior of the
coefficients C', <, C¥| CSll are the same although for a greater value of the volume fraction (0.4 and
higher) the curves are not very close. These coefficients are mainly influenced by the in-plane behavior of the
composite. Similarly differing results for those coefficients were also stated by other authors (Li and Dunn,
1999; Pettermann and Suresh, 2000). In our opinion the reason lies in the assumed transverse isotropy
which is not exactly fulfilled in a square packing because of different fiber distances in diagonal and perpen-
dicular directions. Whereas the analytical method is based strongly on this assumption the numerical
method reflect the real fiber arrangement in the finite element model. In a hexagonal fiber arrangement,
which is not considered in this paper, the transverse isotropy is really fulfilled. For the practical applications
of the calculated effective coefficients these discrepancies must be taken into account.

8. Conclusions

An analytical as well as a numerical approach (RVE) for predicting the homogenized properties of pie-
zoelectric fiber composites has been presented. The numerical approach is based on the finite element meth-
od. Longitudinal and transversal elastic and piezoelectric effective coefficients have been calculated with the
finite element numerical model and compared with analytical solutions based on the asymptotic homoge-
nization method. This permits us to estimate the range of validity of each approach and to quantify the
influence of micro structural parameters, such as the volume fraction, to the effective coefficients. In the case
of 1-3 periodic composites with a non-piezoelectric polymer matrix and piezoelectric ceramic (PZT) fibers,
the estimation is highly depend on the fiber volume fraction. Both, the unit cell method (RVE) based on the
FE as well as analytical methods have their advantages and disadvantages. The analytical approach is able
to model statistic distributions and consumes less computing time than the FE analysis. FE analysis on the
other hand is appropriate to estimate the effective properties of composites with a given periodic fiber dis-
tribution. The FE analysis also allows to include more complex boundary conditions. A generalized ap-
proach has been developed to calculate all effective coefficients for all volume fractions by interfacing
the finite element package ANSYS with a corresponding FORTRAN routines. It reduces the manual work
and time and can be used as a template to determine the effective coefficients of piezoelectric fiber compos-
ites with particular arrangement of fibers such as rectangular, hexagonal or random arrangements.
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